{"id":17925,"date":"2024-03-02T02:41:53","date_gmt":"2024-03-02T02:41:53","guid":{"rendered":"https:\/\/soicau5041.minhngocxoso.com\/?p=17925"},"modified":"2024-03-02T02:41:53","modified_gmt":"2024-03-02T02:41:53","slug":"soi-cau-pascal-bach-phat-bach-trung","status":"publish","type":"post","link":"https:\/\/soicauxoso68.com\/soi-cau-pascal-bach-phat-bach-trung\/","title":{"rendered":"soi c\u1ea7u pascal b\u00e1ch ph\u00e1t b\u00e1ch tr\u00fang"},"content":{"rendered":"
<\/p>\n\n\n
M\u1ed9t trong nh\u1eefng c\u00f4ng th\u1ee9c \u0111\u01b0\u1ee3c c\u00e1c chuy\u00ean gia \u0111\u00e1nh gi\u00e1 r\u1ea5t cao nh\u1edd v\u00e0o c\u00e1ch t\u00ednh to\u00e1n logic, \u0111\u1ea7y chi\u1ebfn thu\u1eadt v\u00e0 x\u00e1c su\u1ea5t tr\u00fang l\u00ean \u0111\u1ebfn 80% \u0111\u00f3 l\u00e0 c\u00e1ch soi c\u1ea7u pascal. \u0110\u1ed5i l\u1ea1i v\u1edbi \u0111\u00f3 l\u00e0 v\u00f4 v\u00e0n kh\u00f3 kh\u0103n trong vi\u1ec7c th\u1ef1c hi\u1ec7n ph\u01b0\u01a1ng ph\u00e1p n\u00e0y \u0111ang ch\u1edd \u0111\u00f3n anh em.<\/p>\n\n\n\n
V\u00ec th\u1ebf h\u00f4m nay chia s\u1ebb b\u00e0i vi\u1ebft h\u01b0\u1edbng d\u1eabn c\u00e1ch soi c\u1ea7u tam gi\u00e1c Pascal \u0111\u1ec3 anh em ch\u1ea5m d\u1ee9t c\u1ea3nh xa b\u1edd v\u00e0 lu\u00f4n c\u00f3 1 b\u00ed quy\u1ebft b\u1eaft s\u1ed1 \u0111\u1ec3 th\u1ee7 th\u00e2n khi tham gia l\u0129nh v\u1ef1c s\u1ed1 h\u1ecdc.<\/p>\n\n\n\n
Soi c\u1ea7u pascal<\/strong> l\u00e0 m\u1ed9t ph\u01b0\u01a1ng ph\u00e1p b\u1eaft s\u1ed1 d\u1ef1a theo quy lu\u1eadt c\u1ee7a tam gi\u00e1c Pascal \u0111\u01b0\u1ee3c \u0111\u1eb7t t\u00ean theo nh\u00e0 to\u00e1n h\u1ecdc n\u1ed5i ti\u1ebfng ng\u01b0\u1eddi Ph\u00e1p Blaise Pascal \u0111\u1ec3 t\u00ecm ra con b\u1ea1ch th\u1ee7.<\/p>\n\n\n\n \u1ee8ng d\u1ee5ng to\u00e1n h\u1ecdc \u0111\u1ec3 \u0111i t\u00ecm con b\u1ea1ch th\u1ee7<\/p>\n\n\n\n Theo quy lu\u1eadt c\u1ee7a tam gi\u00e1c Pascal b\u1eaft b\u1ea1ch th\u1ee7, c\u00e1c h\u00e0ng tam gi\u00e1c s\u1ebd \u0111\u01b0\u1ee3c li\u1ec7t k\u00ea theo quy \u01b0\u1edbc b\u1eaft \u0111\u1ea7u tr\u00ean h\u00e0ng 0 b\u1eb1ng 1 s\u1ed1 duy nh\u1ea5t, c\u00e1c con s\u1ed1 c\u1ee7a h\u00e0ng ti\u1ebfp theo s\u1ebd \u0111\u01b0\u1ee3c t\u00ednh theo c\u00e1ch th\u00eam s\u1ed1 \u1edf tr\u00ean v\u00e0 b\u00ean tr\u00e1i c\u00f9ng s\u1ed1 \u1edf tr\u00ean sang ph\u1ea3i. Cu\u1ed1i c\u00f9ng l\u00e0 2 h\u00e0ng li\u1ec1n k\u1ec1 s\u1ebd c\u00f3 c\u00e1c con s\u1ed1 \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp xem k\u1ebd nhau.<\/p>\n\n\n\n \u0110\u1ec3 \u00e1p d\u1ee5ng \u0111\u01b0\u1ee3c c\u00e1c c\u00e1ch t\u00ednh n\u00e0y, anh em c\u1ea7n ph\u1ea3i c\u00f3 t\u01b0 duy nh\u1ea1y b\u00e9n, ph\u00e2n t\u00edch, t\u00ednh to\u00e1n c\u1ea9n th\u1eadn. C\u00f3 nh\u01b0 v\u1eady m\u1edbi \u00e1p d\u1ee5ng c\u00e1ch soi c\u1ea7u pascal<\/strong> ra \u0111\u01b0\u1ee3c c\u1eb7p l\u00f4 ch\u00ednh x\u00e1c nh\u1ea5t.<\/p>\n\n\n\n \u0110i\u1ec1u c\u01a1 b\u1ea3n \u0111\u1ea7u ti\u00ean anh em c\u1ea7n l\u00e0m l\u00e0 c\u1ea7n x\u00e1c \u0111\u1ecbnh 1 d\u00e3y s\u1ed1 \u0111\u1ea7u ti\u00ean l\u00e0m \u0111\u1ebf th\u00e1p, sau \u0111\u00f3 th\u1ef1c hi\u1ec7n ph\u00e9p c\u1ed9ng cho 2 s\u1ed1 \u0111\u1ee9ng c\u1ea1nh nhau s\u1ebd \u0111\u01b0\u1ee3c d\u00e3y th\u1ee9 2. L\u1eb7p l\u1ea1i li\u00ean t\u1ee5c cho \u0111\u1ebfn khi t\u1ea1o th\u00e0nh tam gi\u00e1c Pascal.<\/p>\n\n\n\n Anh em s\u1ebd l\u1ea5y k\u1ebft qu\u1ea3 c\u1ee7a gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t c\u1ee7a ng\u00e0y h\u00f4m nay, sau \u0111\u00f3 gh\u00e9p ch\u00fang l\u1ea1i v\u1edbi nhau th\u00e0nh 1 h\u00e0ng ngang \u0111\u1ec3 l\u00e0m \u0111\u1ebf th\u00e1p.<\/p>\n\n\n\n Xem b\u1ea3ng KQXS \u0111\u1ec3 d\u1ef1ng th\u00e1p Pascal<\/p>\n\n\n\n Quan s\u00e1t b\u1ea3ng KQSX tr\u00ean t\u00f4i c\u00f3 G.\u0110B v\u00e0 G.1 \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp theo nh\u01b0 sau<\/p>\n\n\n\n 5226749403<\/p>\n\n\n\n B\u01b0\u1edbc ti\u1ebfp theo t\u00f4i s\u1ebd d\u00f9ng quy \u01b0\u1edbc Pascal l\u00e0 l\u1ea5y 2 s\u1ed1 li\u1ec1n k\u1ec1 c\u1ed9ng l\u1ea1i, n\u1ebfu k\u1ebft qu\u1ea3 l\u1edbn h\u01a1n con s\u1ed1 10 th\u00ec t\u00f4i l\u1ea5y s\u1ed1 \u1edf h\u00e0ng \u0111\u01a1n v\u1ecb, b\u1ecf con s\u1ed1 \u1edf h\u00e0ng ch\u1ee5c v\u00e0 s\u1ebd \u0111\u1eb7t n\u00f3 \u1edf h\u00e0ng th\u1ee9 2 c\u1ee7a th\u00e1p.<\/p>\n\n\n\n 5+2=7; 2+2=4; 2+6=8; 6+7=13 l\u1ea5y 3 b\u1ecf 1; 7+4=11 l\u1ea5y 1; 4+9=13 l\u1ea5y 3 b\u1ecf 1; 9+4=13 l\u1ea5y 3 b\u1ecf 1; 4+0=4; 0+3=3 => ta \u0111\u01b0\u1ee3c h\u00e0ng th\u1ee9 hai l\u00e0: 748313343.<\/p>\n\n\n\n C\u1ee9 l\u1eb7p l\u1ea1i qu\u00e1 tr\u00ecnh t\u01b0\u01a1ng t\u1ef1 nh\u01b0 tr\u00ean cho \u0111\u1ebfn cu\u1ed1i c\u00f9ng ch\u1ec9 c\u00f2n 2 con s\u1ed1, th\u00ec t\u00f4i s\u1ebd c\u00f3 \u0111\u01b0\u1ee3c tam gi\u00e1c Pascal sau:<\/p>\n\n\n\n 5226749403 Nh\u01b0 v\u1eady t\u00f4i c\u00f3 c\u1eb7p b\u1ea1ch th\u1ee7 \u0111\u1ec1 c\u1ef1c \u0111\u1eb9p \u0111\u1ec3 \u0111\u1eb7t c\u01b0\u1ee3c l\u00e0 17 \u2013 71.<\/p>\n\n\n\nC\u00e1ch soi c\u1ea7u Pascal chu\u1ea9n theo d\u00e2n ch\u01a1i<\/h2>\n\n\n\n
Soi l\u00f4 \u0111\u1ec1 Pascal d\u1ef1a v\u00e0o gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t<\/h3>\n\n\n\n
748313343
12144677
3358034
683837
41110
5221
743
17<\/p>\n\n\n\n